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ABSTRACT

Objective: We assessed the effect of 670-nm light therapy on growth and hatching kinetics in chickens (Gallus
gallus) exposed to dioxin. Background Data: Photobiomodulation has been shown to stimulate signaling path-
ways resulting in improved energy metabolism, antioxidant production, and cell survival. In ovo treatment
with 670-nm light-emitting diode (LED) arrays improves hatching success and increases hatchling size in con-
trol chickens. Under conditions where developmental dioxin exposure is above the lethality threshold (100
ppt), phototherapy attenuates dioxin-induced early embryonic death. We hypothesized that 670-nm LED
therapy would attenuate dioxin-induced developmental anomalies and increase hatching success. Methods:
Fertile chicken eggs were injected with control oil, 2, 20, or 200 ppt dioxin, or 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) prior to the start of incubation. Half of the eggs in each dose group were treated once per day
from embryonic days 0–20 with 670-nm LED light at a fluence of 4 J/cm2. Hatchling size, organ weights, and
energy parameters were compared between dose groups and LED treatment. Results: LED therapy resulted
in earlier pip times (small hole created 12–24 h prior to hatch), and increased hatchling size and weight in the
200 ppt dose groups. However, there appears to be an LED–oil interaction within the oil-treated controls that
results in longer hatch times and decreased liver weight within the LED control dose groups in comparison to
the non-LED control dose groups. Conclusion: Size and hatching times suggest that the hatching success and
preparedness of chicks developmentally exposed to dioxin concentrations above the lethality threshold is im-
proved by 670-nm LED treatment administered throughout the gestation period, but the relationship may be
complicated by an LED–oil interaction.
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INTRODUCTION

LOW-ENERGY PHOTON IRRADIATION by light in the far red to
near infrared spectral range (630–1000 nm) using low-en-

ergy lasers or light-emitting diode (LED) arrays modulates
multiple biological processes in vitro and in vivo.1–5 Photobio-

modulation has been used to treat soft tissue injuries and has
been shown to accelerate wound healing and tissue regenera-
tion.1,2,5–9 At the cellular level, photo-irradiation at low flu-
ences induces cellular proliferation, the release of growth
factors from cells, increased angiogenesis, and the generation
of ATP.10–14
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Developmental exposure to dioxin (2,3,7,8-tetrachloro-
dibenzo-p-dioxin [TCDD]) and related chemicals has been
shown to result in decreased embryonic survivorship, hatch
and liver weight, pip and hatch success, and growth in chick-
ens.15 Mammals have experienced organ atrophy and de-
creased reproductive success as a result of developmental
exposure to dioxin.16

Previous studies in our laboratory indicate that developmen-
tal 670-nm light treatment improves hatching success in no-in-
ject control chickens by decreasing pip and hatch times, and
increasing body weight and size.17 Phototherapy also attenu-
ates the dioxin-induced embryonic mortality observed when in
ovo dioxin concentrations exceed 100 ppt (100 pg/g).18 In this
article, we evaluate the effect of 670-nm light treatment on
dioxin-induced changes in hatchling growth parameters, liver
weight, and hatching kinetics. 

METHODS

Fertile, domestic chicken eggs (Gallus gallus) were col-
lected from Purdue University Poultry Farm (West Lafayette,
IN) and hand delivered to the laboratory. Three batches of eggs
were used for this study. Eggs were equally distributed based
upon weight into eight dose groups (LED treatment, sunflower
oil vehicle control, 2 ppt dioxin, 20 ppt dioxin, and 200 ppt
dioxin; non-LED, sunflower oil vehicle control, 2 ppt dioxin,
20 ppt dioxin, and 200 ppt dioxin). Dioxin stock was obtained
at a specified concentration in sunflower oil (Ultra Scientific,
Providence, RI) and diluted in fresh sunflower oil (Hain,
Bloomingfoods, Bloomington, IN). The same fresh sunflower
oil was used for the vehicle control. Half of the eggs in each
dose group were treated with a far red LED array positioned di-
rectly above the air cell approximately 1 inch from the surface
of the egg (640–690 nm; 670-nm peak; Quantum WARP-10;
Quantum Devices, Barneveld, WI) in ovo once every 24 h for
80 sec. The radiant energy specifications for the WARP-10 are
as follows: aperture area = 10 cm2; LED chip population = 48;
radiant power minimum = 500 mw; irradiance minimum = 50
mw/cm2; dosimetry minimum = 4 J/cm2. Eggs not treated with
LED (non-LED) were at room temperature at the same time as
paired LED-treated eggs. Egg cleaning, air sac injection, incu-
bation, and LED treatment methods were adopted from Yeager
et al.17 and Henshel et al.19

Since chicks usually pip late on embryonic day 20 (ED 20),
pip and hatch times were monitored beginning after ED 20
(480 h after incubation began) to assess hatching kinetics,
which are indicative of embryonic energy and preparedness to
hatch. Body weight and crown–rump (CR) length were mea-
sured prior to sacrifice, and liver and yolk weight were mea-
sured during necropsy. Yolk-corrected body weight (YCBW)
and liver weight corrected YCBW (liver Somatic Index [SI])
were determined in order to normalize body and liver weight
across all hatchlings. Animals were handled in accordance
with the Guide for the Care and Use of Laboratory Animals,
as adopted and promulgated by the National Institutes of
Health. Animal care and handling protocols were approved by
the Indiana University Bloomington Animal Care and Use
Committee (BIACUC).

Endpoints were evaluated both graphically (Microsoft Excel)
and statistically (SAS System, SAS Institute, Inc, Cary, NC).

Statistical analysis

Statistical analyses included regression (PROC REG), t-test
(PROC TTEST), and analysis of variance (ANOVA; PROC
GLM) using PDIFF (LSMEANS) and Gabriel’s (MEANS)
within the PROC GLM procedure to compare multiple end-
points for statistically significant differences. Statistical signif-
icance was indicated by an alpha (�) of 0.05. Marginal
statistical significance was indicated by 0.05 < � < 0.10xx.
Logarithmic regressions were generated by substituting 0.002
ppt for the vehicle control (=0 ppt) or by removing the vehicle
control data from the regression analysis. Statistically signifi-
cant logarithmic regressions were selected from the most sig-
nificant relationship generated from each method.

RESULTS

Size and energy parameters

Dioxin decreased mean body weight and slightly decreased
CR length in a dose-dependent manner (Table 1). The dioxin-
related decrease in YCBW was more severe in the lethal (200
ppt) non-LED group compared to the 200 ppt LED-treated
group. Within the non-LED dose groups, there was an overall
9.3% reduction in YCBW at 200 ppt dioxin versus the vehicle
control, whereas within the LED-treated dose groups there was
a 7.05% reduction in YCBW at 200 ppt dioxin versus the vehi-
cle control. Moreover, CR length is increased (0.9–3.2%) with
LED therapy at all dose groups. 

LED treatment by itself in the vehicle control group (compared
to non-LED) resulted in a decrease in liver weight (16.8%) and
liver SI (17.2%). In ovo dioxin treatment, by itself (non-LED:
2–200 ppt), caused a decrease in liver weight (10.2–14.5%) and
liver SI (5.6–13.3%) in the hatchling chicks. By comparison,
LED co-treatment with dioxin induced an increase in liver
weight and liver SI compared to the liver parameters in the LED-
treated vehicle control group. This liver weight increase was sta-
tistically significant (p = 0.0301) in the 2 ppt dose group.

Dioxin by itself (non-LED) caused an increase of 6.3–17%
in the total hatching time (ED 20 to pip + pip to hatch), with a
maximal increase of 17% at 20 ppt. LED treatment across all
dioxin dose groups resulted in a decrease of 1.4–4.1% in over-
all hatching time. When considering the dioxin treatment alone
(non-LED), the largest increase in pip to hatch time is evident
in the 2 ppt dose group, whereas LED co-treatment at the same
dose results in a decrease in pip to hatch time. 

Decreased pip times from ED 20 are evident within the 200
ppt dose groups when LED therapy is administered throughout
development (Table 1). Within only the LED dose groups,
there is a statistically significant (p = 0.0524) decrease in pip
time in the 200 ppt dose group compared to the vehicle control.
No equivalent decrease in pip time was seen in the non-LED
dioxin-dosed groups. There is a net negative change in pip time
in the difference between LED and non-LED treated groups as
the dose increases (oil vehicle, 1.65% increase; 2 ppt, 0.35%
increase; 20 ppt, 14.95% decrease; 200 ppt, 30.9% decrease). 
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DISCUSSION

These studies confirm that dioxin decreases hatchling body
weight, CR length, and liver weight,15 and report for the first
time that dioxin also delays hatching time. LED treatment
(670 nm) reverses or prevents some of these deleterious ef-
fects, reducing, for example, the net (24.2%) decrease in
body weight at the lethal dose (200 ppt). The transition point
where LED–dioxin co-exposure results in higher YCBW in
comparison to non-LED–dioxin is very similar to the lethal-
ity transition point (~70 ppt) described in Yeager et al.,18

above which LED therapy clearly attenuated dioxin-induced
early embryonic mortality. In addition, the extent of the
dioxin-induced decrease in liver weight and liver SI across all
doses was mitigated by LED co-treatment. Current studies in
our laboratory are aimed at elucidating the biochemical
mechanisms behind these effects, including how brain ATP
content is related to hatch time and embryonic survivorship. 
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